List 2

Limits of functions

35. Use the facts

$$
0<\ln (n) \quad \text { for all } n \in \mathbb{N} \text { with } n \geq 2
$$

and

$$
\ln (n)<\sqrt{n} \quad \text { for all } n \in \mathbb{N}
$$

to find $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}$.
36. Use the Squeeze Theorem to determine the value of $\lim _{n \rightarrow \infty}\left(5^{n}+3^{n}\right)^{1 / n}$.
37. Evaluate $\lim _{n \rightarrow \infty} \frac{n^{3}}{3^{n}}$.
38. Find the limits of these sequences and functions:
(a) $\lim _{n \rightarrow \infty} \frac{2^{n}+4^{n+1 / 2}}{4^{n}}$
(c) $\lim _{n \rightarrow \infty} \frac{n^{3}+n^{-3}}{n^{2}+n^{-9}}$
(e) $\lim _{n \rightarrow \infty} \sin (\pi n)$
(b) $\lim _{x \rightarrow \infty} \frac{2^{x}+4^{x+1 / 2}}{4^{x}}$
(d) $\lim _{x \rightarrow \infty} \frac{x^{3}+x^{-3}}{x^{2}+x^{-9}}$
(f) $\lim _{x \rightarrow \infty} \sin (\pi x)$
39. Calculate $\lim _{x \rightarrow \infty} 6^{x}$ and $\lim _{x \rightarrow-\infty} 6^{x}$.

If $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ both exist and are equal.
If $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ have different values, or at least one of them does not exist, then $\lim _{x \rightarrow a} f(x)$ does not exist.
40. Fill in the following table, then determine whether $\lim _{x \rightarrow-7} \frac{2 x+16}{1-x}$ exists. If it exists, what is its value?

x	-7.1	-7.08	-7.003	-7.0001	-6.9999	-6.998	-6.96
$f(x)$							

41. For the function $f(x)= \begin{cases}\sqrt{x} & \text { if } x \leq 4 \\ x^{2} & \text { if } x>4\end{cases}$
(a) Fill in the following table, then determine whether $\lim _{x \rightarrow 4^{-}} f(x)$ (also written $\lim _{x \nearrow 4} f(x)$ or $\lim _{x \uparrow 4} f(x)$ in some books) exists. If it exists, what is its value?

$$
\begin{array}{l||l|l|l|l|}
x & 3.9 & 3.95 & 3.975 & 3.9999 \\
\hline f(x) & & & &
\end{array}
$$

(b) Fill in the following table, then determine whether $\lim _{x \rightarrow 4^{+}} f(x)$ (also written $\lim _{x \searrow 4} f(x)$ or $\lim _{x \downarrow 4} f(x)$ in some books) exists. If it exists, what is its value?

x	4.5	4.25	4.1	4.001	4.00006
$f(x)$					

(c) Does $\lim _{x \rightarrow 4} f(x)$ exist? If it exists, what is its value?
42. For the function whose graph is shown below, give the following limits (if they exist) to the nearest 0.5 .
(a) $\lim _{x \rightarrow 1^{-}} f(x)$
(d) $\lim _{x \rightarrow 2} f(x)$
(b) $\lim _{x \rightarrow 1^{+}} f(x)$
(e) $\lim _{x \rightarrow 3} f(x)$
(c) $\lim _{x \rightarrow 1} f(x)$
(f) $\lim _{x \rightarrow \infty} f(x)$

43. Determine whether $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}$ exists. If it exists, what is its value?
44. Determine whether $\lim _{x \rightarrow 0} \frac{|x|}{x}$ exists. If it exists, what is its value?
45. (a) Which of the functions below satisfy $\lim _{x \rightarrow 0^{+}} f(x)=0$?
(b) Which of the functions below satisfy $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$?

$$
x^{2}, \quad x^{-2}, \quad x^{1 / 2}, \quad 2^{x}, \quad \ln (x), \quad \sin (x), \quad \cos (x), \quad \tan (x)
$$

46. Does $\lim _{x \rightarrow 0} \frac{|x|-4}{|x-4|}$ exist? Does $\lim _{x \rightarrow 4} \frac{|x|-4}{|x-4|}$ exist? Draw a graph of the function for x-values between -5 and 5 .
47. Using the function $g(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq-2 \\ x & \text { if }-2<x<2, \\ 4 & \text { if } x=2 \\ 3^{-x} & \text { if } x>2\end{array}\right.$ calculate the following:
(a) $\lim _{x \rightarrow-\infty} g(x)$
(d) $\lim _{x \rightarrow-2} g(x)$
(b) $\lim _{x \rightarrow(-2)^{-}} g(x)$
(e) $\lim _{x \rightarrow 2^{-}} g(x)$
(c) $\lim _{x \rightarrow(-2)^{+}} g(x)$
(f) $\lim _{x \rightarrow \infty} g(x)$
48. Calculate $\lim _{t \rightarrow 8} \frac{t+4+t^{1 / 3}}{t^{2}-8 t+7}$.
49. Calculate $\lim _{t \rightarrow-3} \frac{\sqrt{2 t+22}-4}{t+3}$.
50. (a) Expand $(\sqrt{h+1}-1)(\sqrt{h+1}+1)$ and then simplify as much as possible.
(b) Calculate $\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h}$.
51. Find all value(s) of p for which $\lim _{x \rightarrow 8} f(x)$ exists if

$$
f(x)= \begin{cases}3 x+p & \text { if } x \leq 8 \\ 2 x-5 & \text { if } x>8\end{cases}
$$

52. (a) Find $\lim _{x \rightarrow 0} \frac{(5+x)^{3}-125}{x}$.
(b) Find $\lim _{h \rightarrow 0} \frac{(5+h)^{3}-125}{h}$.
(c) Find $\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$. Your answer will be a formula with x.
± 53. Find $\lim _{x \rightarrow 0}(1+t x)^{1 / x}$. Your answer will be a formula with t.
53. For each graph $y=f(x)$ below, is $\lim _{x \rightarrow-2^{+}} f(x)=0$ true?
(a)

(b)

(c)

54. For each graph $y=f(x)$ from Task 54, does $\lim _{x \rightarrow-2} f(x)$ exist?

A function $f(x)$ is continuous at $\boldsymbol{x}=\boldsymbol{p}$ if $f(p)$ and $\lim _{x \rightarrow p} f(x)$ both exist and are equal to each other. If not, then $f(x)$ is discontinuous at $\boldsymbol{x}=\boldsymbol{p}$.

A "jump", "hole", or "vertical asymptote" in a graph $y=f(x)$ will cause $f(x)$ to be discontinuous.
56. For each graph $y=f(x)$ from Task 54 , is $f(x)$ continuous at $x=2$?
57. Give the following limits:
(a) $\lim _{x \rightarrow(\pi / 4)^{-}} \tan (x)$
(c) $\lim _{x \rightarrow(\pi / 2)^{-}} \tan (x)$
(b) $\lim _{x \rightarrow(\pi / 4)^{+}} \tan (x)$
(d) $\lim _{x \rightarrow(\pi / 2)^{+}} \tan (x)$
58. (a) Find the vertical asymptote(s) of

$$
g(x)=\frac{1}{x^{2}+x-6} .
$$

(b) Find the vertical asymptote(s) of

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+x-6} .
$$

59. What horizontal asymptotes does the function

$$
f(x)=\frac{x}{|x|+5}
$$

have? Hint: Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
60. Match the functions with their graphs:
(a) $\frac{x}{x^{2}-1}$
(b) $\frac{1}{x^{2}-1}$
(c) $\frac{x+1}{x^{2}-1}$
(d) $\frac{x^{2}}{x^{2}-1}$

(II)

61. Calculate $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)$ using the Squeeze Theorem for functions.
62. If $f(x)$ is a function for which

$$
24 x-41 \leq f(x) \leq 4 x^{2}-5
$$

for all x, what is $\lim _{x \rightarrow 3} f(x)$?
63. List all points where the function graphed below is discontinuous.

64. Give an example of a function that is discontinuous at infinitely many points.
25. Give an example of a function that is discontinuous at every point.
66. For what value(s) of p is the function

$$
f(x)= \begin{cases}x^{3}+5 & \text { if } x<-2 \\ x+p & \text { if } x \geq-2\end{cases}
$$

continuous?
67. Which of the following functions has a hole at $x=8$?
(B) $\frac{x^{2}-8 x-9}{x^{2}+8 x+7}$
(A) $\frac{x^{2}-8 x-9}{x^{2}-7 x-8}$
(C) $\frac{x^{2}-9 x+8}{x^{2}-7 x-8}$
68. Is $\frac{5 x^{2}+1}{x^{2}-1}$ continuous? Is $\frac{5 x^{2}+1}{x^{2}+1}$?
69. Without graphing, determine which one of the three equations below has a solution with $0 \leq x \leq 3$.
(A) $x^{2}=4^{x}$,
(B) $x^{3}=5^{x}$,
(C) $x^{5}=6^{x}$.
70. Let $f(x)=\frac{13 x-77}{x-5}$.
(a) $f(4)=25$ and $f(11)=11$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[4,11]$?
(b) $f(6)=1$ and $f(11)=11$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[6,11]$?
(c) $f(6)=1$ and $f(8)=9$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[6,8]$?
71. Label each of the following expressions as "a sum", "a difference", "a product", "a quotient", or "a composition".
(a) $x^{2}+7$
(e) $\frac{5 \sin (2 x)}{e^{(\sin (x))^{3}}}$
(b) $(x+7)^{2}$
(f) $\sqrt{\frac{1}{x}+\frac{1}{x^{2}}}$
(c) $\sin (x+7)$
(g) $\sin (\sqrt{x})+\sqrt[3]{\sin (x)}$
72. Give the composition $f \circ g$ for the functions $f(x)=e^{x}$ and $g(x)=8 x-3$.
$\mathcal{\sim} 73$. Use the definition of a limit with ε and δ to show that the limit of

$$
f(x)=4 x-3
$$

as x approaches 2 is equal to 5 .
As a reminder, starred t tasks are ones that I (Adam) believe are beyond the level of an introductory calculus class.

